Nombres dérivés, fonctions dérivées de deux fonctions usuelles

Définition 1

Soit f une fonction définie sur un intervalle I et soit \mathscr{C} sa courbe représentative dans un repère (O, i, j). Si la courbe représentative de la fonction f admet au point A de coordonnée A(a, f(a)) une tangente non parallèle à l'axe des ordonnées.

On appelle **nombre dérivé** de la fonction f en a **le coefficient directeur de la tangente** \mathcal{T} à la courbe \mathcal{C} au point d'abscisse A.

I La fonction carrée : $x \mapsto x^2$

- 1. Ouvrir GeoGebra
- 2. Tracer la fonction carrée
 - (a) Dans la ligne de Saisie écrire : $f(x) = x^2$
 - (b) Modifier la fenêtre d'affichage : cliquer sur les 3 traits horizontaux en haut

à droite et sur Propriétés, puis sur l'icône 🛛 🏠 (à droite dans le menu)

régler la fenêtre comme suit : $x_{min} = -4$, $x_{min} = 4$, $y_{min} = -8.5$, $y_{max} = 11$

5 ¢	
Fichier	1
🖍 Éditer	1
Associations	
Affichage	
🕸 Propriétés	2
🛠 Outils	

3. Création du point A sur la courbe \mathscr{C} d'abscisse -3	Curseur			
a=2	lom a=2			
(a) on crée en premier un curseur <i>a</i> en Cliquant sur l'icône puis on com-	Nombre	O Angle	O Entier	
plète comme sur l'écran ci-contre : a=3; min = -4; max = 4; incrément = 0,1.	Intervalle	Curseur	Animation	
(b) Créer le point A en entrant dans la barre de saisie A=(a,f(a))	min: -4	max:	Incrément:	

- 4. <u>Création de la tangente à Cau point A.</u> Entrer dans la ligne de saisie T=Tangente(a,f)
- 5. déterminer le coefficient directeur de la tangente T
 - (a) Dans la ligne de saisie entrer : p=pente [T]p est la valeur du coefficient directeur de la tangente à la courbe Cau point A.
 - (b) Remplir le tableau ci-dessous en modifiant la valeur du curseur *a*, abscisse du point *A*.

a	-3	-2	-1	0	1	2	3
Coefficient directeur de la tan- gente à \mathscr{C} au point d'abscisse <i>a</i>	- 6	-4	- 2	Ð	Z	4	6

On constate que pour chaque point de la courbe \mathcal{C} , on peut déterminer le coefficient directeur de la tangente à la courbe \mathcal{C} . On va donc tracer la courbe représentative de cette nouvelle fonction, constitué de l'ensemble des points *M* de coordonnées (a,p), ou $a = x_A$ et p = f'(a).

- 6. création du point *M*
 - Dans la ligne de Saisie entrer : M=(a,p)
- 7. Tracer de la courbe

(a) Activer le tracé du point *M* : Dans la fenêtre algèbre, clic droit sur le point *M* puis cocher Afficher la trace

- (b) bouger le curseur, vous pouvez même activer la trace en cliquant sur « Lecture » au bout du curseur a = 2
- (c) Que constatez-vous? Les points 11 sont tous alignés 8. Déterminer une équation de courbe ainsi obtenue. y = 2xy = 2x
- 9. En déduire l'expression de p en fonction de l'abscisse a du point A
- 10. D'après le résultat établit à la question (9) nous pouvons en déduire que si $f(x) = x^2$ alors pour tout réel *a*, on a

$$f'(a) = \dots 2 \dots 2 \dots$$
 $Si \int c(x) = x^2 a \ln x \int (x) = 2 \pi c$

Π **la fonction cube :** $x \mapsto x^3$

La feuille de travail construite à la partie I va être réutilisée dans cette partie

- 1. Désactiver le tracé du point *M* : clic droit sur le point *M* puis décocher Afficher la trace.
- 2. Tracer de la fonction cube
 - (a) Dans la ligne de Saisie écrire : $f(x) = x^3$
 - (b) Régler la fenêtre de travail avec les paramètres suivants (voir 2b) $x_{min} = -4$, $x_{min} = 4$, $y_{min} = -30$, $y_{max} = 40$
- 3. Compléter la dernière ligne du tableau suivant en modifiant la valeur du curseur a, abscisse du point A

a	-3	-2	-1	0	1	2	3]
α^{e}	9	4	1	0	1	4	9	
Coefficient directeur de la tan- gente à C au point d'abscisse <i>a</i>	27	12	3	D	3	12	27 🗳	

- 4. Afficher la trace du point M voir 7a
- 5. bouger le curseur, vous pouvez même activer la trace en cliquant sur « Lecture » au bout du curseur
 - a = 2 • <u>5</u>
- 6. A quelle fonction de référence le tracé obtenu vous fait il penser $\frac{2}{\sqrt{2}}$ tracé me fait jenser à la 7. Écrire cette fonction dans la deuxième ligne du tableau ci-dessus et le compléter. fon chian $x \rightarrow x^2$
- 8. Quel lien semble-t-il y avoir entre les 2 dernières lignes?
- 9. D'après le résultat établit à la question 8 nous pouvons en déduire que si $f(x) = x^3$ alors pour tout *a* réel, on a

 $f'(a) = \dots 3 \dots 6^{U}$ $f_i f_{(\alpha)} = x^3$ alors $f'_{(\alpha)} = 3x^2$